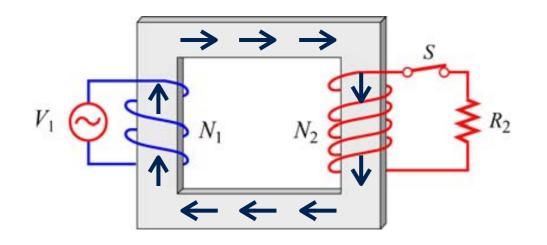
Transformador AC para AC



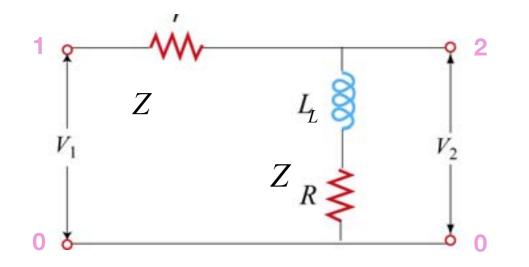
Dispositivo utilizado para **aumentar ou diminuir** a tensão AC em um circuito. Consiste de duas bobinas - primária (1) e secundária (2) - com N₁ e N₂ espiras, respectivamente.

 $V_{1} = -N_{1} \frac{d\Phi_{B}}{dt} \qquad V_{2} = -N_{2} \frac{d\Phi_{B}}{dt} \implies \frac{V_{2}}{V_{1}} = \frac{N_{2}}{N_{1}}$ variação do fluxo em cada uma das espiras

 $N_2 > N_1 \implies V_2 > V_1$ d.d.p na saída maior que na entrada - transformador "step up" $N_2 < N_1 \implies V_2 < V_1$ d.d.p na saída menor que na entrada - transformador "step down"

https://www.youtube.com/watch?v=ZjwzpoCiF8A

Filtro passa alto (rL)



Z X Dispositivo utilizado para filtrar freqüências baixas, deixando passar freqüências altas. X

$$V = ZI \implies V_0 e^{i\Omega t} = |Z| e^{i\phi} I_0 e^{i\Omega t} \implies V_0 e^{i\Omega t} = |Z| I_0 e^{i(\Omega t + \phi)} \implies V_0 = |Z| I_0$$

$$V_{10} = |Z_1| I_0 \implies I_0 = \frac{V_{10}}{|Z_1|} \qquad Z_1 = \sqrt{(R+r)^2 + X_L^2} \qquad I_0 X = \frac{V_{10}}{\sqrt{(R+r)^2 + X_L^2}}$$

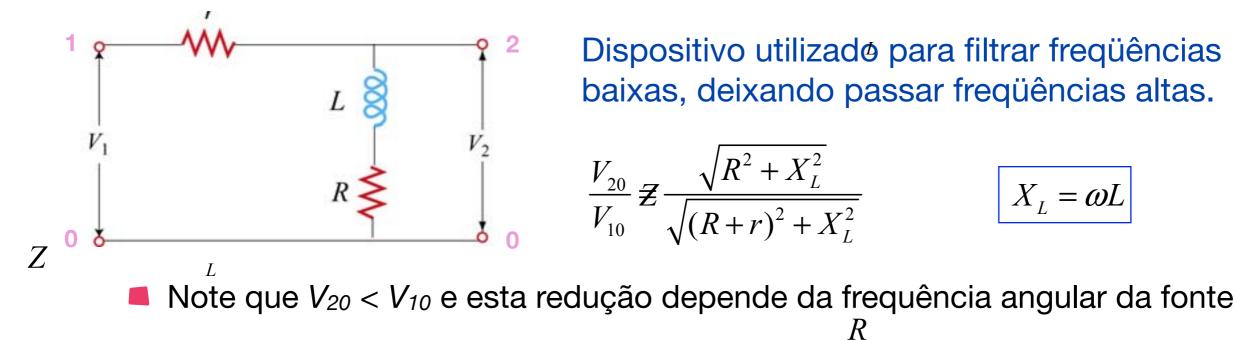
$$V_{20} = I_0 Z_2 = I_0 \sqrt{R^2 + X_L^2} \qquad \qquad \boxed{\frac{V_{20}}{V_{10}} = \frac{\sqrt{R^2 + X_L^2}}{\sqrt{(R+r)^2 + X_L^2}}} \qquad \qquad \boxed{X_L = \omega L}$$

Note que $V_{20} < V_{10}$ e esta redução depende da frequência da fonte

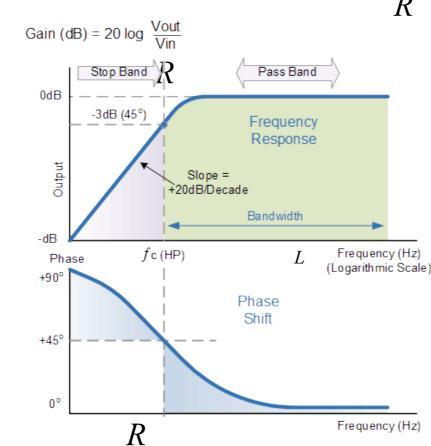
R

Ζ

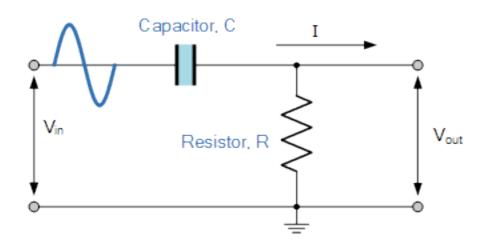
Filtro passa alto (rL)



X



Filtro passa alto (CR) solução



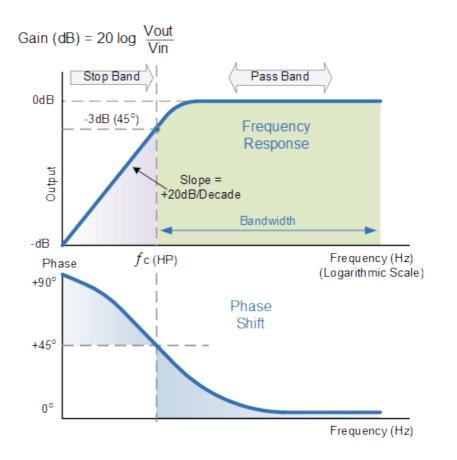
Dispositivo utilizado para filtrar freqüências baixas, deixando passar freqüências altas.

$$\frac{V_{out}}{V_{in}} = \frac{R}{|Z|} = \frac{R}{\sqrt{R^2 + X_C^2}} \qquad X_C = -\frac{1}{\Omega C}$$

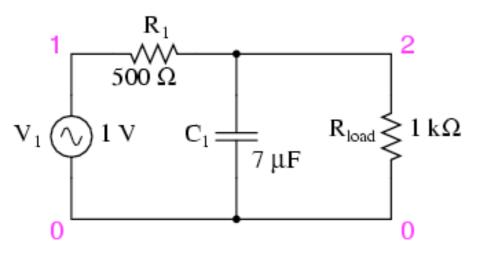
$$\Omega \to 0 \quad X_C \to \infty \quad V_o = 0$$
$$\Omega \to \infty \quad X_C \to 0 \quad V_o = V_i$$

$$G(\Omega) = 20 \log\left(\frac{V_o}{V_i}\right)$$

 $\lim_{\Omega\to\infty}G(\Omega)=0$

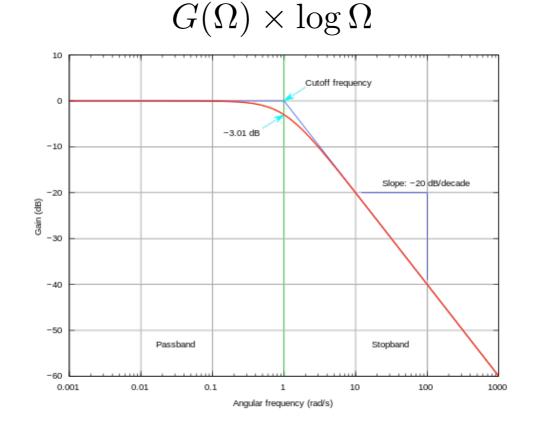


Filtro passa baixo (RC)



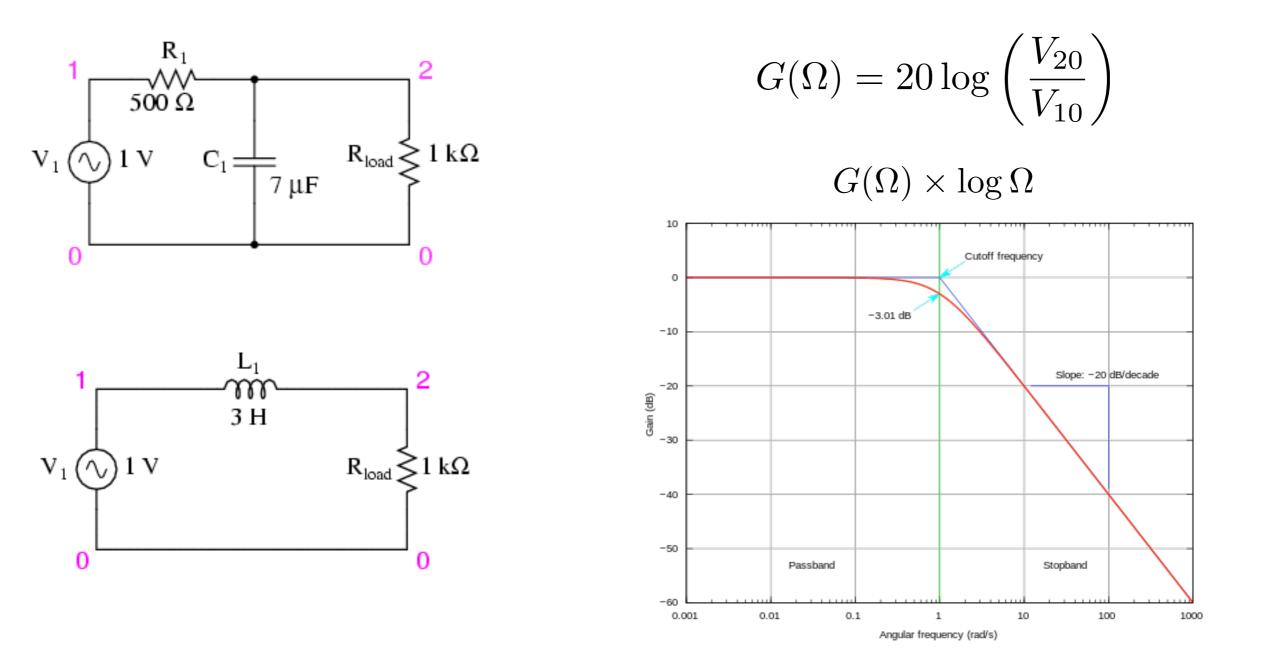
Dispositivo utilizado para filtrar freqüências altas, deixando passar freqüências baixas.

Calcule a razão V_{20}/V_{10} e faça o gráfico do ganho $G(\Omega) = 20 \log \left(\frac{V_{20}}{V_{10}}\right)$ em função da frequência angular da fonte



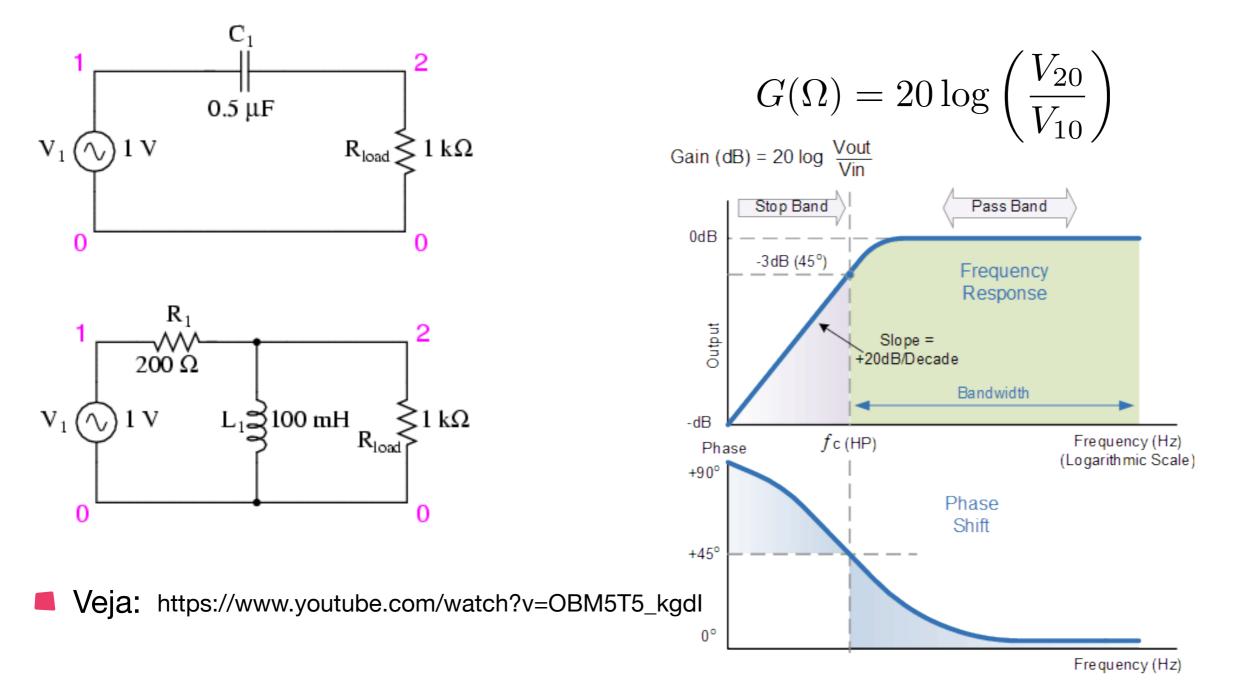
Filtros passa baixo

Dispositivo utilizado para filtrar freqüências altas, deixando passar freqüências baixas.

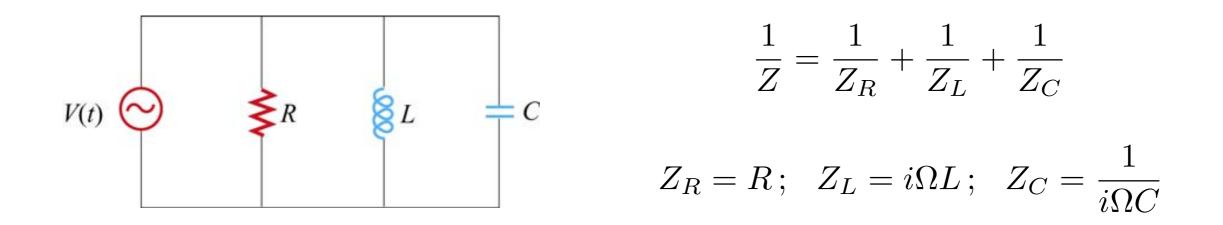


Filtros passa alto

Dispositivo utilizado para filtrar freqüências baixas, deixando passar freqüências altas.



Circuito RLC em paralelo



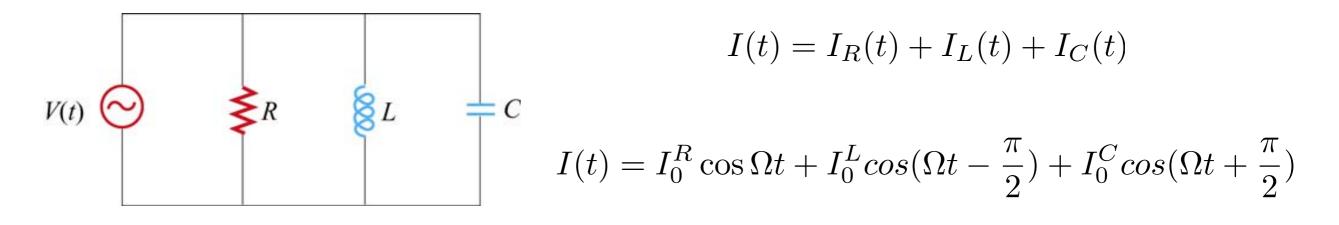
$$\tilde{I}_R = \frac{\tilde{V}}{Z_R} \quad \Rightarrow \quad I_R = \frac{V_0}{R} cos(\Omega t) = I_0^R cos(\Omega t); \quad I_0^R = \frac{V_0}{R}$$

$$\tilde{I}_L = \frac{\tilde{V}}{Z_L} \quad \Rightarrow \quad \tilde{I}_L = \frac{V_0 e^{i\Omega t}}{i\Omega L} = \frac{V_0}{\Omega L} e^{i(\Omega t - \frac{\pi}{2})} \quad \Rightarrow \quad I_L = I_0^L \cos(\Omega t - \frac{\pi}{2}); \quad I_0^L = \frac{V_0}{\Omega L}$$

$$\tilde{I}_C I = \frac{\tilde{V}}{Z_C} \quad \Rightarrow \quad \tilde{I}_C = V_0 e^{i\Omega t} \, i\Omega C = V_0 \Omega C e^{i(\Omega t + \frac{\pi}{2})} \quad \Rightarrow \quad I_C = I_0^C \cos(\Omega t + \frac{\pi}{2})$$

$$I_0^C = V_0 \Omega C$$

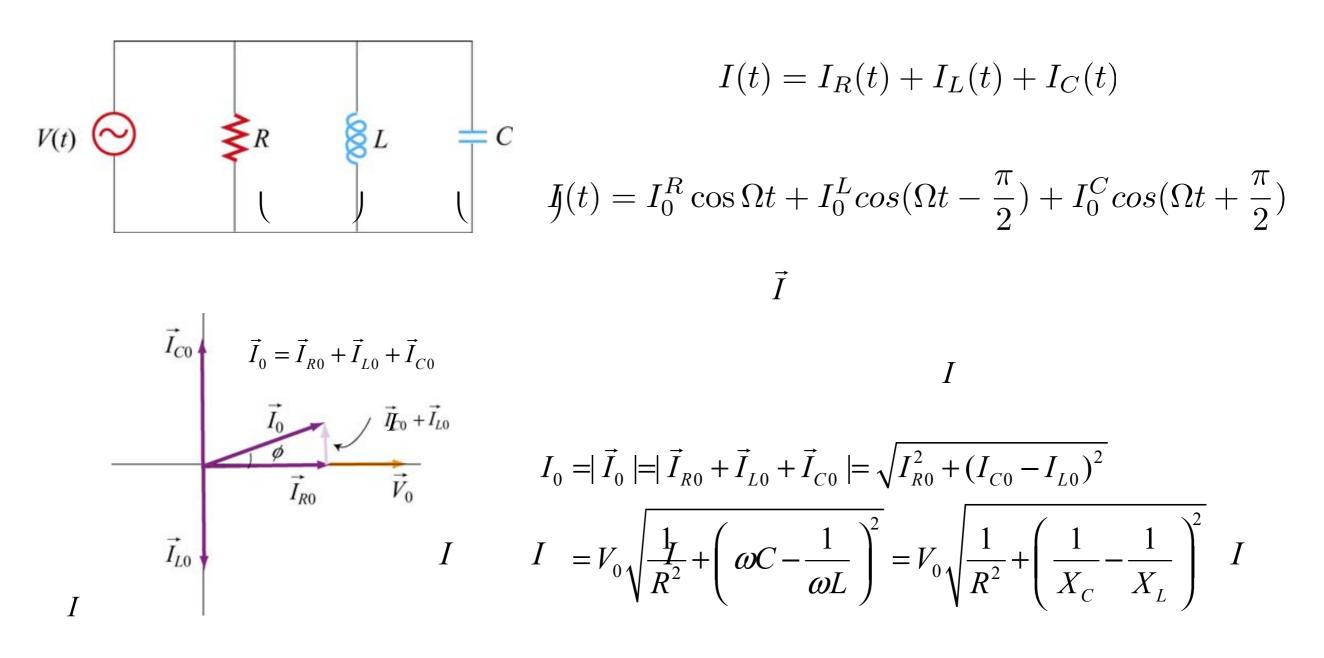
Circuito RLC em paralelo



$$\begin{split} \tilde{I} &= \frac{\tilde{V}}{Z} = \frac{V_0}{|Z|} e^{i(\Omega t - \phi)} = I_0 e^{i(\Omega t - \phi)}; \quad I_0 = \frac{V_0}{|Z|}; \quad \tan \phi = \frac{\Im m Z}{\Re e Z} \\ \frac{1}{Z} &= \frac{1}{Z_R} + \frac{1}{Z_L} + \frac{1}{Z_C} = \frac{1}{R} + i \left(\Omega C - \frac{1}{\Omega L} \right) = A + iB \qquad \begin{array}{c} A &= \frac{1}{R} \\ B &= \Omega C - \frac{1}{\Omega L} \end{array} \\ \frac{1}{|Z|} &= \sqrt{A^2 + B^2} = \sqrt{\frac{1}{R^2} + \left(\Omega C - \frac{1}{\Omega L} \right)^2} \quad \Rightarrow \quad I_0 = V_0 \sqrt{\frac{1}{R^2} + \left(\Omega C - \frac{1}{\Omega L} \right)^2} \end{split}$$

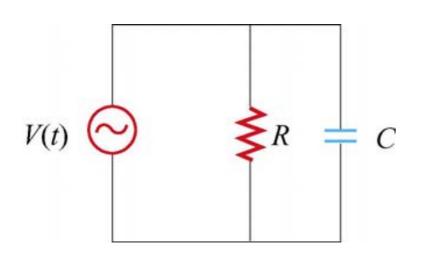
$$\tan \phi = -\frac{B}{A} = R \left[\frac{1}{\Omega L} - \Omega C \right]$$

Circuito RLC em paralelo



Note que $I_0 \neq I_{R0} + I_{L0} + I_{C0}$

Circuito RC em paralelo



Considere que $V(t) = V_0 \cos \Omega t$ e calcule:

- 1. A corrente através do resistor
- 2. A corrente que chega e sai das placa do capacitor
- 3. A carga no capacitor
- 4. A corrente de deslocamento através do capacitor
- 5. A magnitude da corrente total
- 6. A impedância do circuito
- 7. A diferença de fase entre a corrente e a fonte

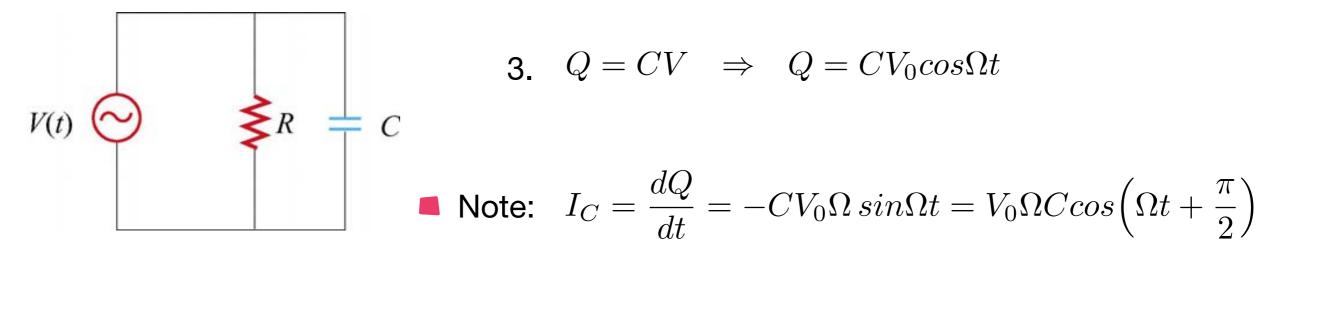
8. A magnitude do campo magnético na região entre as placas do capacitor, a uma distância r do eixo do capacitor.

1.
$$\tilde{I}_R = \frac{\tilde{V}}{Z_R} \implies I_R = \frac{V_0}{R} cos(\Omega t) = I_0^R cos(\Omega t); \quad I_0^R = \frac{V_0}{R}$$

2.
$$\tilde{I}_C = \frac{V}{Z_C} \Rightarrow \tilde{I}_C = V_0 e^{i\Omega t} i\Omega C = V_0 \Omega C e^{i(\Omega t + \frac{\pi}{2})} \Rightarrow I_C = I_0^C cos(\Omega t + \frac{\pi}{2})$$

 $I_0^C = V_0 \Omega C$

Circuito RC em paralelo



4.
$$I_d = \epsilon_0 \frac{d\Phi_E}{dt} = \epsilon_0 A \frac{d}{dt} \left(\frac{V}{d}\right) = \left(\epsilon_0 \frac{A}{d}\right) \frac{dV}{dt} = C \frac{dV}{dt} = -CV_0 \Omega \sin \Omega t = I_C$$

5.
$$I = I_R + I_C = I_0^R \cos\Omega t + I_0^C \cos\left(\Omega t + \frac{\pi}{2}\right)$$

Circuito RC em paralelo

6.
$$\tilde{I} = \frac{\tilde{V}}{Z} = \frac{V_0}{|Z|} e^{i(\Omega t - \phi)} = I_0 e^{i(\Omega t - \phi)}; \quad I_0 = \frac{V_0}{|Z|}; \quad \tan \phi = \frac{\Im m Z}{\Re e Z}$$

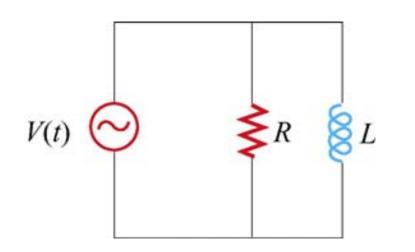
$$\frac{1}{Z} = \frac{1}{Z_R} + \frac{1}{Z_C} = \frac{1}{R} + i\Omega C = A + iB$$

$$Z = \frac{1}{A + iB} \qquad \qquad A = \frac{1}{R} \qquad \qquad B = \Omega C$$

$$\frac{1}{|Z|} = \sqrt{A^2 + B^2} = \sqrt{\frac{1}{R^2} + \Omega^2 C^2} \quad \Rightarrow \quad I_0 = V_0 \sqrt{\frac{1}{R^2} + \Omega^2 C^2}$$

7.
$$\tan \phi = -\frac{B}{A} = -R\Omega C$$

Circuito RL em paralelo



Considere que $V(t) = V_0 \cos \Omega t$ e calcule:

- 1. A corrente através do resistor
- 2. A corrente através do indutor
- 3. A magnitude da corrente total
- 4. A impedância do circuito
- 5. A diferença de fase entre a corrente e a fonte